Intrusion Detection Systems Correlation: a Weapon of Mass Investigation

Pierre Chifflier Sébastien Tricaud

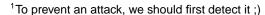
INI 101/103 Bvd MacDonald 75019 Paris. France

CanSecWest Vancouver 2008

Outline

Introduction

Outline


- Correlation
- **Visualization**
- Conclusion

Outline

What are IDSs?

- Intrusion Detection Systems
- Marketing folks may call it
 - Intrusion Prevention System (IPS)¹
 - Security Information and Event Management (SIEM)
- Since IPS and SIEM sound too 2005, we stick to IDS

Introduction 000000

Outline

What are they?

- Host IDS (HIDS): Not (really) prone to false positives
- Network IDS (NIDS): Cannot decrypt unknown encrypted traffic, is **not** the target machine and sensitive to false positives
- Hybrid IDS (HbIDS): Mixes HIDS and NIDS

Interesting sources of information out there

Why do we keep our interest in Hybrid IDS when we have more than just NIDS and HIDS ?

Outline

Interesting sources of information out there

Why do we keep our interest in **Hybrid IDS** when we have more than just NIDS and HIDS ?

Low Level Sources:

Introduction

- Routers: Cisco, Linksys, Juniper, . . .
- Firewalls: Netfilter, NuFW, Checkpoint, pf, ...
- **Operating systems**: System logs, users, running applications, . . .
- Physical: Alarm, ...

Outline

Interesting sources of information out there

Why do we keep our interest in **Hybrid IDS** when we have more than just NIDS and HIDS ?

Low Level Sources:

- Routers: Cisco, Linksys, Juniper, . . .
- Firewalls: Netfilter, NuFW, Checkpoint, pf, ...
- **Operating systems**: System logs, users, running applications, . . .
- Physical: Alarm, . . .

High Level Sources:

- Honeypots: Nepenthes, ...
- Network: Snort, Sancp, NuFW, . . .
- Host: Auditd (SELinux), Linux PAM, Samhain, Ossec, Prelude LML. ClamAV ...
- Scanners: Nessus, p0f, nmap . . .

Meta IDS (MIDS)

Introduction 000000

Hybrid IDS

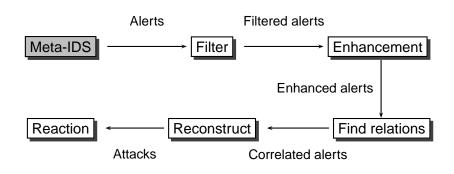
An Hybrid IDS combines HIDS and NIDS.

Meta IDS

A Meta IDS (MIDS) mixes any element that can send data useful for intrusion detection as a whole

Prelude IDS

Prelude IDS has evolved to a Meta IDS



Examples of alerts:

- OSSEC: SSHD authentication success.
- Prelude LML: Admin login successful
- Snort: BLEEDING-EDGE SCAN NMAP -f -ss
- ClamAV: Eicar-Test-Signature (succeeded)
- Auditd (SE Linux): App Abnormal Termination

Correlation path

The correlation challenge

What everybody knows: IDS limitations

- Too much information
- Limited view

- False positives
- False negatives
- Evasion (fragmentation, signature, time, ...)

000000

IDS correlation

- To limit IDS pitfalls, we need correlation
 - We need a Meta-IDS
 - We need a scalable and distributed architecture to centralize information
 - We need to define accurately each alert and each agent

The correlation challenge

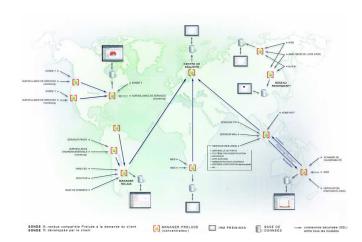
Outline

The IDMEF: Intrusion Detection Message Exchange Format

- Normalize agent alerts regardless of their nature
 - Alert information is inherently heterogeneous
 - Intrusion detection environments are different
 - Analyzer capabilities are different
 - Operating environments are different
 - Commercial vendor objectives are different
- Provides an exhaustive vocabulary to IDS developers and users
- \Rightarrow IDMEF (RFC 4765)

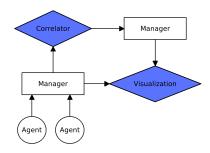
http://www.rfc-editor.org/rfc/rfc4765.txt

The correlation challenge


Prelude IDS

Outline

- Meta-IDS implementing IDMEF
 - libprelude, libpreludedb
 - Prelude LML: Analyze logs
 - Prelude Correlator: Correlate alerts from agents
 - Prelude Manager: Centralize and store/deliver/relay alerts
 - Prewikka: Graphical interface
- Required capabilities for correlation:
 - Encryption between agents and manager, manager to manager
 - Failover, whenever alerts cannot be sent to the manager
 - Relaying to centralize, backup and filter alerts
 - Reverse relaying to keep DMZ secure
 - Normalize your alerts: Complete the IDMEF message


000000

The correlation challenge

Prelude user architecture

- 1 Introduction
- Correlation
- **3** Visualization
- Conclusion

Objectives

What?

- Concentrate on high-level analysis
- Reduce noise created by false positives or harmless events
- Fight evasion
- Discover new attacks

Outline

Objectives

What?

- Concentrate on high-level analysis
- Reduce noise created by false positives or harmless events
- Fight evasion
- Discover new attacks

How?

- Use trust score to improve the reliability
- Combine elements from heterogeneous sources (use the Meta-IDS!)
- Reconstruct and understand the attack

Outline

Trust score (TS)

TS = severity of the alert \times accuracy of the alert

- 0 (false alarm) < TS < 1 (known and verified attack)
- Initial value depending on the alert (analyzer and signature reliability)
- NIDS: high probability of false alerts ⇒ low TS
- Will be adjusted during correlation steps
- Will be used to take the final decision

Outline

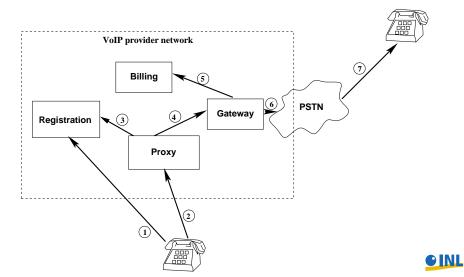
Understand an attack

Objectives:

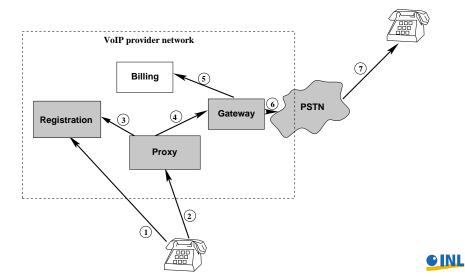
- Reconstruct the sequence of events
- Detect the targets, protocols, tools, . . .
- Adapt the severity
- Reduce false positives
- Prepare for an eventual counter-measure
- Ensure the Security Policy is properly applied

Outline

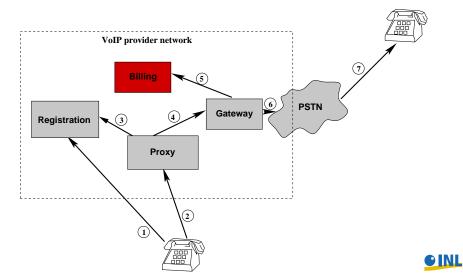
Understand an attack

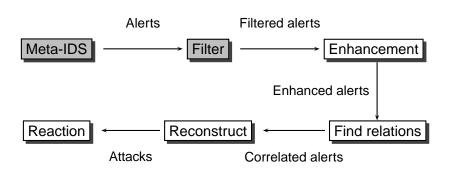

Objectives:

- Reconstruct the sequence of events
- Detect the targets, protocols, tools, . . .
- Adapt the severity
- Reduce false positives
- Prepare for an eventual counter-measure
- Ensure the Security Policy is properly applied


Tools:

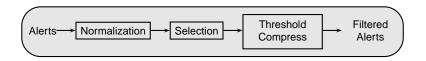
- Normalization, Centralization
- Correlation
- Visualization

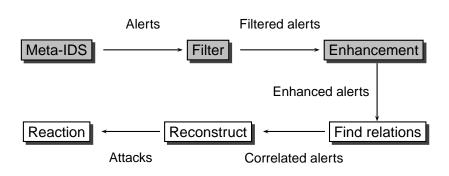




Filtering

- Normalize input (classification.text, analyzer type)
- Apply initial filtering
- Compression: replace n alerts by one, keeping all information
- Threshold: if n > threshold, ignore other alerts (loosing information)


Alert	Filtered alert
SSHD authentication success	User login attempt
	completion: success


Alert	Filtered alert
SSHD authentication success	User login attempt
	completion: success
User login failed (Alice)	User login attempt (2 × Alice)
User login failed (Alice)	completion: failed

Alert	Filtered alert
SSHD authentication success	User login attempt
	completion: success
User login failed (Alice)	User login attempt (2 × Alice)
User login failed (Alice)	completion: failed
User login successful (Alice)	dropped

Outline

Enhancement (enlarge your alerts)

Passive Infomation Collection (PIC):

- Passive data (OS, applications, versions, inventory)
- Profiling (sancp)
- OSVDB, BID, CVE, patches, known exploits
- Current attacks (DShield)
- Passive . . . or not ! (hint: Nessus)

Post-enhancement filter

- Send alerts on spurious changes
- Re-evaluate alert with additional data
 - Delete alert or lower trust score if the target is not affected
 - Increase trust score if affected

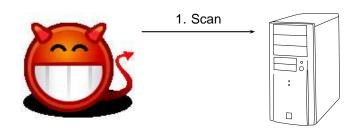
Filtered alert	Enhanced alert
"THCIISLame IIS	"THCIISLame IIS
SSL Exploit Attempt"	SSL Exploit Attempt"
	Host OS: Linux 2.6.24
	Reference: isc.sans.org/diary.php?date=2004-07-17
	Exploit www.thc.org/exploits/THCIISSLame.c
	dropped

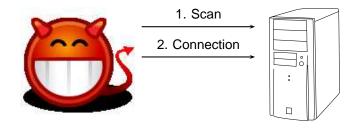

Find relations

Attack definition

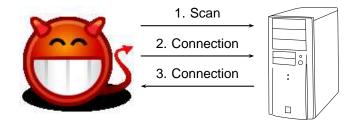
- An attack is a sequence of alerts or events with a particular relation
- Attack = $n \times$ alerts
- \bullet n > 1
- Classification of the attack can be done after the entire correlation

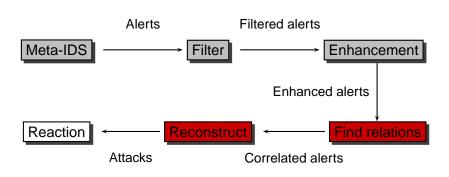
Find relations

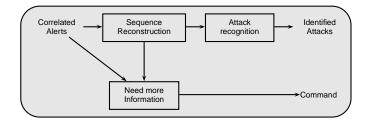


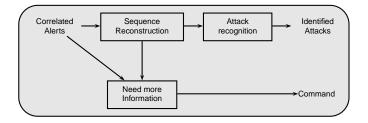


- Equivalence
- Similarities, during a time window (source, destination, attack vector, ...)
- Archive / knowledge database (known patterns)
- Search on a long time range
- Regular events

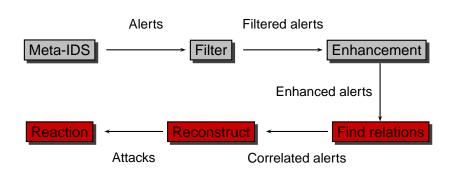


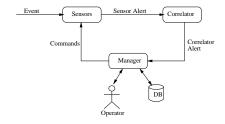



Enhanced Alert	Correlated alert
Port scan +	Sequence
Incoming connection +	3 elements
Outgoing connection	
source/dest	
OSSEC	SSH login attempts
SSHD authentication success (Alice) +	(1 × Alice)
Prelude LML	
User login successful (Alice)	



Attack reconstruction


- Try to reconstruct the attack (events and timeline)
- Match vs patterns of known attacks


Correlated Alert	Attack
Sequence:	Attack
Scan +	High success probability
Incoming connection +	known pattern
Outgoing connection	

Trust Score evaluation

- Attack is reconstructed and identified
- Trust Score is part of the decision to react
- Ability to capture the whole session by sending commands to agents

Reaction

- Report problem (mail)
- Archive
- Prepare a visualization
- Counter-measure
 - (try to) block attack (dangerous !)
 - Collect more information
 - Send commands to agents
- Notify

- 1 Introduction
- Correlation
- Visualization
- 4 Conclusion

Visualization

•oooooooooo

Graphical representations

IDS visualization

- Required to manage large amount of data
- Helps to focus on what is important
- Uses the human correlation engine
- Helps to write correlation signatures

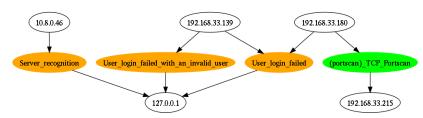
Problem

- Alert are complex objects
- Numerous criteria (N-dimensional plot)
- How to graph correctly?

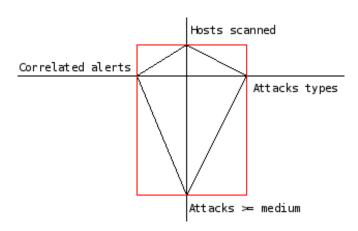
Visualization

Graphical representations

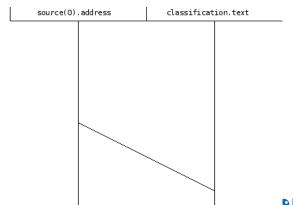
Visualization techniques


What we use:

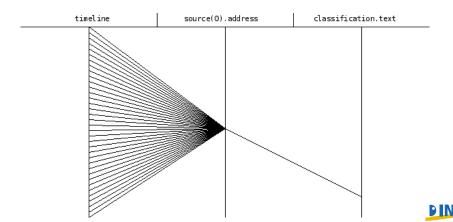
- Parallel coordinate plot
- 2D nodes
- 3D nodes
- Starplot
- Other (Treemap, ...)


2D nodes

Graphviz makes easy to use relations



Starplot



Visualization dilemma: take the right parameters for the right graph

Visualization dilemma: take the right parameters for the right graph

Relevant parameters from IDMEF paths

- Source (alert.source(0).node.address(0).address)
- Destination (alert.target(0).node.address(0).address)
- Impact (alert.assessment.impact.severity)
- Completion (assessment.impact.completion)
- Attack vector (alert.classification.text)
- Agent type (analyzer(0).class)

Code 1/3

- Based on Prelude IDS
- High-level language
- Python + Prelude Easy bindings

```
svn co http://svn.prelude-ids.org/libprelude/
   branches/libprelude-easy-bindings
```


Code 2/3

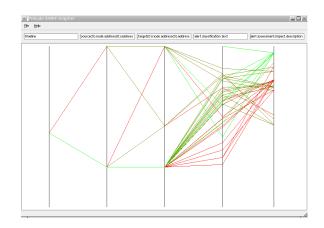
How to get alerts

```
from PreludeEasy import *
client = ClientEasy("pig", Client.IDMEF READ)
client.AddConnection("192.168.33.215")
client.Start()
idmef = client.RecvIDMEF()
```


Code 3/3

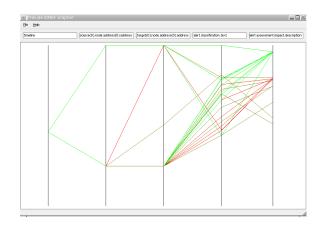
Graph Objects (GO!)

```
pen = OtGui.OPen()
pen.setColor(colorize_impact_severity(idmef))
line1 v = GetYPos(
      idmef.Get("alert.target(0).node.address(0).address"))
line2_y = GetYPos(
      idmef.Get("alert.classification.text"))
scene.addLine(
      line1 x, line1 v,
      line2 x, line2 y,
      pen)
```

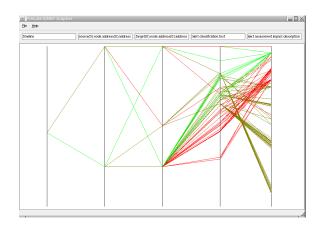


Prelude IDMEF Grapher (pig)

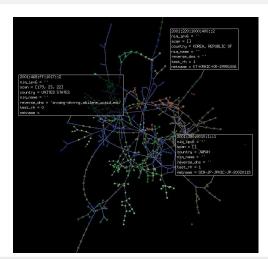
- Shows IDMEF paths
- Uses Prelude IDMEF pool
- Interesting to quickly understand a scanner
- Snort and LML are used as agents



Saint: 166 alerts generated



Retina: 76 alerts generated



Nessus: 1019 alerts generated


RTGraph3d

GraphGL

We were jealous of rtgraph3d;-)

Available at http://www.dindinx.net/graphgl/

Pierre Chifflier, Sébastien Tricaud

Wolfotrack: Netfilter connection tracker made easy

Visualization Pros and Cons

	Starplot	2D	3D	Parallel Coordinate Plot
Large number of alerts	No	No	Yes	Yes
Large number of criteria	No	Yes	Yes	Yes
Time base representation	No	No	No	Yes
Easy to read	No	Yes	Yes	Yes
Live filtering	No	No	Yes	Yes

Summary

- Visualization is still under construction.
- Until now, parallel multi-axes view is the best we've found
- We still do not know the best view for the best criterion.
- There is not just one good visualization

Future work

- Understand application layer better
- For how long should we monitor an attack?
- Write more correlation rulesets
- Find better visualization models

- INL staff
- Yoann Vandoorselaere
- Philippe Saadé
- David Odin
- RV Martin
- Elodie and Anthony

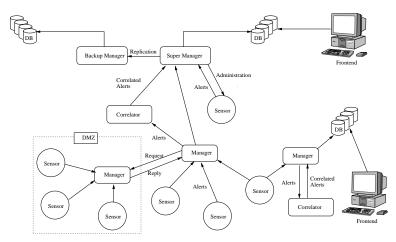
Questions?

Thank you for your attention

Contact us!

- Pierre Chifflier <p.chifflier@inl.fr> https://www.wzdftpd.net/blog
- Sébastien Tricaud <s.tricaud@inl.fr> http://www.gscore.org/blog
- INL http://www.inl.fr
- Prelude IDS http://www.prelude-ids.org
- Prelude IDS Trac http://trac.prelude-ids.org

References


References

- Conti, G.: Security Data Visualization. No Starch Press, San Francisco, CA, USA (2007)
- Valdes, A., Skinner, K.: Probabilistic alert correlation. Lecture Notes in Computer Science 2212 (2001)
- Schultz, E.: Intrusion detection event correlation: Approaches, benefits and pitfalls (March 2007) CERIAS Security Seminars.

References

Prelude user architecture

Pierre Chifflier, Sébastien Tricaud

Example: NuFW

Example of agent: NuFW (http://www.nufw.org)

- authenticating firewall, based on user identity
- Provides a native Prelude module for log
- Add information on users on each connection
- Add valuable information for correlation
- Allows to strictly apply the Security Policy

Example of alert: NuFW (1)

- Example of IDMEF alert, with interesting fields.
- Alert emitted for a new HTTP connection using Firefox.

```
messageid: 5478076470
analyzer(1):
        analyzerid: 2334565015741136
        name: nufw
        manufacturer: http://www.nufw.org/
        model: NuFW
        version: 2.3.0 ($Revision: 3475 $)
        class: Firewall
        ostype: Linux
        osversion: 2.6.20-15-386
        process:
                name:
                pid: 15197
```


Example of alert: NuFW (2)

```
create time: 29/06/2007 11:26:24.0 +02:00
classification:
        text: Connection opened
detect time: 29/06/2007 11:32:56.0 +02:00
analyzer time: 29/06/2007 11:32:56.642005 +02:00
source(0):
        spoofed: unknown (0)
        node:
                category: unknown (0)
                address(0):
                        category: ipv4-addr (7)
                        address: 192.168.0.2
        user:
                category: application (1)
                user id(0):
                        type: current-user (1)
                        name: pollux
                        number: 1000
        process:
                name: firefox
                path: /usr/bin/firefox
        service:
                iana protocol number: 6
                iana protocol name: tcp
                port: 3489
```


Example of alert: NuFW (3)

```
target(0):
        decov: unknown (0)
        node:
                category: unknown (0)
                address(0):
                         category: ipv4-addr (7)
                         address: 82.165.85.221
        service:
                iana_protocol_number: 6
                iana_protocol_name: tcp
                port: 80
assessment:
        impact:
                severity: low (2)
                type: user (5)
                description: Connection state changed
```


Attack classification

Our attack classification:

- Authentication
 - Local user
 - System user
 - Admin user
 - Other
- Probe
 - Protocol
 - Scan
 - Sniff
 - Users
 - Other
- Corruption
 - File
 - Application
 - Other
- Availability (Denial of Service)
 - Resource consumption
 - User account locking
 - Application crash
 - Other

Outline

Our classification

- The alert itself is *not* sufficient to find the category
- Use the alert (low-level), correlation, to find the type (category) of the attack
- No global catch-all category (one per section)
- clear separation between the goal and the type
- Don't mix the goal with the type of the attack: A file corruption may be used for Probe as well as for Penetrate (the same exploit is often used for Probe and Penetrate)
- We group attack means in each defined Goal

